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ON AN EXPONENTIAL SERVER WITH GENERAL CYCLIC ARRIVALS(1)
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ABSTRACT

A GnIMl1 queue is defined as a single server queue with exponential

service time and general cyclic arrival distributions of cycle length n.

The waiting time distribution for such a queue is proved to be a sum of

n exponential terms; this is a generalization of GIM1l queue results.

Based on this a method for obtaining the steady-state waiting time distri-

butions for GnIM1 queues is introduced. An example is presented to

show an application of GnIMl1 queues in deterministic routing.
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cyclic arrivals, deterministic routing, spectoral factorization.
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I. INTROUCTION

In this paper we consider the behavior of single server queues in
th

which the service time distribution S(t) is exponential. The t inter-

arrival time is assumed to have a distribution A1 (t) (or density at(t)).

In the most general case all Ais may be different. Here, however, we

consider the case where the sequence of Ai's consists of a repeating

cycle of length n. In other words the kth, n+kth, 2n+kth, ... arrivals

have the same interarrival distribution Ak for k-l ... n. These distri-

butions are assumed to have rational Laplace transforms. We refer to

this queueing system as GnIMI1 system. Such queueing systems arise in

computer networks using deterministic routing.

The behaviour of a Gn Mt1 system may be characterized in terms of

its virtual waiting time where the virtual waiting time at any instant

is the unfinished work at the server. This is a well known approach

used in the study of GIIGI1 systems [1, 2, 3, 4].

1 virtual wittfng time for a GIMI1 queue is known to have an

exponential steady state distribution [3, 5]. Here we prove that the

steady state distribution for the virtual waiting time of a GnIMI1

queue is a sum of n exponential terms. The approach taken in this paper

uses the decay characteristics of the expected virtual waiting time in

the future. In section II after introducing the necessary notation,

the equivalence of the expected virtual waiting time decay function and

the virtual waiting time distribution function are established. The

solution for the steady state expected virtual waiting time decay

function for a GnIMI1 queuing system is obtained in section I1. An

example for application of the results of a GnIMll queue is given in

Section IV.
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1 1. NOTATION

The approach used here is based on the results presented In [4].

For the sake of completeness, in the following we present the notations

and results relevant to the discussion here.

Consider a server providing service to arriving customers

according to a first-in-first-out discipline. Let the service need of

a customer be determined probabilistically and defined by a service time

distribution S(t) (or a corresponding service time density function s(t)).

We are interested in characterizing this queuing system in terms of the

virtual waiting time T(t) at time instant t. Let the density and the

distribution functions of r(t) be w(r,t) and W(T,t), respectively. Clearly,

these functions are defined for T a 0 and t a 0.

In the virtual waiting time density wil,t), T is the random variable

and t is a parameter of this density function. For a given value of t,

T specifies the waiting time from t onwards and hence t specifies the

origin for T. When we change the value of T to t1 in w(',t) the origin

for T is changed with it to reflect the waiting time corresponding to

the instant t1.

When an arrival occurs at time T the waiting time density function

immediately after the arrival, w(rT + ) may be expressed as

w('rT') u w (a,T) s(rT-)da -I (2.1)

As a result of the arrival, the waiting time undergoes a step change

in that T(T+ ) - T(T') + service time. Therefore, the density of the waiting

time after the arrival at time T is obtained by convolving w(T,T') with

the density function of the service time s(T). Similarly, the distribution

function of the waiting time after an arrival at time T is given as



W~rT) .W(a.Tr) s(,r-a)d (.2
or0

wes 0is the convolution Orator.

Having seen how w(vyt) changes whben an. arrival occurs. let -us see how

it changes with tin when no arrival occurs.. Given w(yr,T) and that no

arrivals occur betwen T and T+T1, w(y.T+Ti) is given as

w(,t.TIT1) 8 ()fw aT)du + w(r+T1,T)
0 Q (.4)

and

I(t%.T 1T) a W(T+T1 ,T) Tr > 0 -. (2. 5)

where d(yr) is the unit impulse function C33.

T' T,

W(-CT+TjW(T ,T+r 1)

0
T+T1  TeT1

Figure 1 FI gure 2

Th ft b of no arrivals between tin T and T+T1 is explained in

Figure 1. 7Me origin of -c for w(TI, T+T1) Is changed to TV!'1 as shown In

M3.



the figure. The magnitude of the delta function at TOO for w(.r, T+T1 )

corresponds to the probability of the event {O c(T.)cT 1 . This pro-

bability is simply the shaded area of w(T,T). The corresponding changes

to the distribution function (Equation 2.5) are shown in Figure 2.

If we are given the arrival instants and the initial waiting time

distribution, we may compute w(Tt) for any time t using equations (2.1)-

(2.5). Note that no assumptions are made about the characteristics of

the arrival process. The complete transient solution for the waiting

time distribution may thus be obtained.

If we are only interested in the epochs just before or just after

the arrivals and not necessarily at particular time instants we may use

the following result:

Let wn+ (T,O) be the waiting time density function after the nth

arrival at time 0. The waiting time density function just before

the next arrival n+1 is given as

v., it)-~of W (Tt) an(t)dt (2.6)
(n+l) 0

where an t) is the interarrival time density for the next arrival

and w (T,t) is computed from w (,r,O) using equation (2.4).n n
lhese res st.* can also. be-used to..obtaJz..the steady state-so] ution,.

if one exists. To arrive -t the steay..state behavior we observe

that the waiting time distribution remains the same immediately before

(or immediately after) each arrival. Let an arrival (say the nth) occur at

time 0 and the system is in steady-state. Then, given the next arrival

occurs at t, w(-,t) is obtained using equation (2.4). But as random

arrivals may occur, w(T,t) is only a conditional density function for

the waiting time seen by the next arrival. This marginal density Is given

by equation (2.6). Under the steady state condition, we may equate either



wn. (T) to wn+1-(T), or Wn+(T) to Wn+l+(T). Therefore, W(T) is the steady

state waiting time distribution function if and only if W(T) satisfies

Jj. i ,(a+t) a(t) s(r-o)dtdo -, (2.7)

Note that by rearranging the terms in equation (2.7) Lindley's integral

equation [2] results.

While '(t) is a stochastic process which is completely characterized

by the desity function w(T,t), in many practical situations we are interested

in calculating the expected value of T(t), Ew(t). Knowing w(rt), Ew(t)

may be calculated using the following equation

EW(t) w(rt)dt (2.8)
0

Note tltat equation (2.8) involves w(Tt). In order to use it in calculating

Ew(t) for an arbitrary t, w(T,t) must be known for all r.

We define Ew+(t) and Ew.(t), to be the expected virtual waiting time

at instant t evaluated immediately after and before an arrival occuring at

t-O, respectively.

As shown in[4], Ew(t) before and after an arrival is related as follows.

Ew+(t) - Es(t) + Ew_(o)Cl-S(tl) + s(t) ( Ew_(t)

(2.9)

and

Ew_(t) - a(T) EW+(t+T)dT t 1 0 4 (2.10)
0

where Es(t) f T s(t+T)dT. - (2.11)

Equation (2.9) allows us to compute Ew+(t) given Ew.(t) and the occurence

of an arrival. Equation (2.10) may then be used to evaluate Ew.(t) Just

before the next arrival given the interarrival density function a(t) for

the next arrival. These equations cen be used to evaluate the steady state



values for these functions when such a steady state exists.

The relationship between Ew(t) and w(t,O) is established in Theorem 1.

Theorem 1 - Ew(t) and w(t,O) are equivalent in that given one the other

is uniquely determined.

Proof - (a) Given w(t,O), equations (2.8) and (2.5) uniquely determine

Ew(t).

(b) Given E.w(t) we may write [5)

From equation C2.5)

Ew(t) -f E1-W(t+r, O)]dT

= f [1-W(v,O)]dv.

Let 1-W(v,O) - U(v,O)

Thus, Ejt) f U(vO)dv.
t

Also, Ejt+At) f U(v,O)dv.

Ew(t+At) - Ew(t)" tI t+AtUvOd

Therefore, tf U(vO)dv
At at t

In the limit as at,-# 0

dE (t)
-- U(t,O) --(1-W(tO)).

dt

dE (t)
Thus W(t,O) + + 1.

dt

This completes the proof of 'ThieOrem I. [

The approach taken in this paper uses Ew(t) to characterize the queuing

system. Clearly, from EV(t) the distribution functions for the virtual

waiting time can be evaluated.

-6-



II1. SOLUTION'TO GnIMI1 SYSTEM

Consider a first-in-first-out exponential server with

s(t) - uet.

Let the 1th interarrival distribution and density be At(t) and at(t).

respectively. Also, let Ew~ (t) and-Ew+ (t) be the expected virtual waiting

time decay functions just before and after the ith arrival.

Assume that the arrivals to this server consist of a repeating cycle

of length n in that

ai+knit) - at(t) for i = 1,2,...,n
and k = 1,2,3....

In the steady state, if one exists,
Ew+ (t): Ew+ (t) )

and i 1. for I - 1,2,...,n
and k - 1,2.3....

Ew-i+kn ( (3.1)

To solve this system we use equation (2.9) to evaluate Ew+ (t) given
i

EW t) and use equation (2.10) to evaluate Ew (t) given Ew+ (t).

These combined with equation (3.1) are then used to obtain the steady

state values of Ew (t) functions. Note that for the exponential service

time
•1 e-.t

Es(t) e

and S(t) * 1 - t

From equation (2.9)

Ew+i(t) -I t + Ew_ (0)(e'ut) + Ew_ (t) 0 ue-ut

or

Ew+(t) (Ew- (0) + -_)eut + Ew_ (t) Q ue"'t

t 0

Also, Ew (0) + - w+ (0)

-7-



Thus,Th sE +i M) F t(O)e' t + E. _(t) u tu (3 2)

From equation (2.10)

Ew-t+l(t) -J at+ 1(T) Ew+ (t+T)dT t 2 0 - (3.3)

Let us define the Laplace transforms of Ew+i(t) & Ew_ i (t) as

Lw+i(S) = f0M e'StE+(t)dt s 2 0 4 (3.4)

and Lw'i(s) = I0 e'stEw i (t)dt s k 0 (3.5)

Note that as Ew+ i(t) and Ei (t) are defined for t 1 0, Lw+i(s) and Lw_ (s)

are analytic in the right halfplane of s. Also, as Ew(t) functions are

positive and integrable the transforms Lw (s) exist [ 3).

Taking the transform of equation (3.2) we may write
11

Lt(S) =Ew+(0 )  1 + Lw (s) " . -'(3.6)

Equation (3.3) expresses a form of convolution which is defined only

for t 2 0. If we were to add a function of the form

f ai+l(T)Ew+ .(t+T)dT t < 0
0 1

we may write the corresponding tranforms as [ 33:

G-I+(S) + (s) -L (-s) • (s) -'(3.7)
i+1 ai+1  Lw+i

where G' i+(s) is a function of s which is analytic in the left half plane

of S.

Before proceeding further we need the following Lemmas.

Let a(t) be the density function of the interarrival time with a

rational laplace transform La(s).

Lemma I -,+sL (-s) cin be wr.tten as
- - ~ -a,



L (-S) = S(s) + 0(s) 4(3.8)

u+s a

where

0+(s) is analytic for Re(s) > 0 and o'(s) is analytic for Re(s) < 0.

And that + (s) has the form *+(s) = S where c is a constant.

Proof. As La(s) is rational we may write it as

La(s) = n-ls + a + "" + a 0
Onsn + Bn-l s n -I + a 0

Note that a(t) is defined for t > 0 only. Thus, L (S1 is analytic in the right

half plane and has-polesonly in the left haI Tplane.

Therefore, La (-s) is analytic in the left half plane and has polel only in the

right half plane. Clearly, the product

u- L (-s)
+s a

has one pole in the left half plane and the rest in the right half plane.

Therefore, this function can be written as t.+(s)+ '(s) where

o+ (s) - where c is a constant.Ma+s

This completes the proof. U

Lemma 2
)n La(-s) can be written as o+(s) + 0'(s)

where
n ci

4 +- (S)- (3.9)
i-1 (U~s)

Proof. This directly follows from the Lemma 1. U

We observe that multiplying the expression by an rational function "

which is analytic in the left half plane will still yield a decomposition

-9



in which §+(s) has the form shown in equation (3.9)

Lem 3

L. (S) - x(s)Lw, (s) + Y(s) - z(s)
n 0

where

x Ls)- t. ) La (-s)j

Y(S) LL(aSn { n Lj ' )

s) Ew+ (0) IT P+s

and

Z(S) a-E ljnnfl -LLaj(-s)j 6(s) -. (3.10)

Proof. Follows from a repetitive application of equations (3.6) and (3.7). a

For-the next two Lenmas let us 6iider a'ditlbution function Fix),

x i 0 With expected value B andliplaci trihsf6-M If(S).

Lemma 4 If (a) Re(s) a: 0, lwj< 1 or (b) Re(s) > 0, lwlg 1 or

(c) uB > n and Re(s) k 0, jwj s 1 then the equation
zn  V4ff(s + U(l-z))

has exactly m roots z - Sr(sw)(r-l,2,...m) in the unit circle Izi < 1.

We have
(.U)J-l(,Erw /m ) JI ( -1 Du~)Jim M

6r(s,w) - JL
Jul ds

(3.11a)

where fr a e 2 r/ n (r-1,,...m) are the mth roots of unity.

Proof. See [6, page 126]. •

Lema 5 Let r a 8r(0,1) where Sr(sw) is given by equation (3.11a).
If uO > m then 8,92.,,8, are the m roots in z of the equation

.10-
............ )/...... I ........... ...... .. .................................... ... ..)i iI . ..... "." j

... .. ..... II~iII.................



- .. ( (-z) -. (3. 1rib)

in the unit circle jzj < 1. If go s m then 61#8 2,...m,1 are the m-1

roots in z of (3.U1b) in the unitcircle Izi < 1, whereas 6m a 1.

Proof. See [6, page 126]. U

We further observe that equation (3.11b) always has one root at z - 1. This

is because fortf(s) to be a Laplace transform of a probability distribution
f(o).a 1

Theorem 2 - In a Gl IMI1 queue where the arrival distributions have rational

Laplace transform,
n li

Lw- (s) - -. (3.12)

where Lw.(s) is the Laplace transform of E.(t) at the beginning of a

cycle, ai's are constants and 's are the n roots of the equation

nC1 - PL i-s)] - 0
1 1+s a1

in the region Isl < p.

Proof - For a Gn M1 queue with a cycle of length n, in the steady state,

if one exists, L.n (s) - L.o (s) Lw.(s). In order to find L.(s)
n 0

we use Lemma 3 and the technique of spectral factorization [7]. We may

write equation (3.10) as

Lw.(s) - x(s) Lw.(s) + Y(s) - z(s)

or (1 - x(s))) Lw-(s) - Y(s) - z(s) 4 (3.13)

In order to use the spectral factorization tech,0que we need to express

1 (S) ) (3.14)

where 9 (s) is analytic in the right half plane and 4(s) is analytic in

the left half plane. From equation (3.10)

j nn
X(s) L (-) 4 (3.14a)

x~s) " t- 1 1-iL



n

As L. s) is the Laplace transform of a density function a1 (t) and l La (S)

is the Laplace transform of the sum of n random variables coming from
n

densities a1(t), a2(t) ... an(t). Thus,tn L. (s) is a Laplace transform

of a valid density function. By substituting

1L- . z

we may express the equation

1 -x(s) - 0 (3.14b)

in t!be form of (3.11b). From Lemma 5 this equation has n roots. Let

the negative of these roots be 41 , - 1,2,...,n. We note that s - 0 is also

a root of this equation. Using these roots we may write r+(s) and q,(s) as

n
+ s a 1 (s+ )

(S) - -1 # (3.15)

(s+)

and ns n (s+ t)
4'(s) - -i1 - (3.16)

(s+)n(,-x(s))

Clearly, f+(s) and j'(s) satisfy the necessary conditions for spectral

factoriztion [7]. From equations (3.13) and (3.14) we write

L(s) ,+s) - '(s) CY(s) - z(s)] (3.17)

From Lemma 2

i'(s) LY(s) - z(s)) • +(s) + 0(s) 4 (3.18)

where

0+ n 1  (3.19)*(s)- • .r- •(3
'NJ (Ua~s)

From equations (3.17) and (3.18)

Lw.(s),+(s) - O+(s) -'(s)

A straightforward use of the analytic continuation arguments and Liouville's

Theorem [7] implies

Lw.(S)+(s) - 4*(s) # '(s) • K

where K Is a constant.



Therefore,

L. (s) K 0+(s)
" P(s)

Substituting from equations (3.15) and (3.19), we have

r n c+1 (
L,-(s) n LK + Z (320

s i (s+.)
i-i

To evaluate K we note that 1rm Ew.(t) - 0
t.- O

Hence,
(s n)n . c

slim sLw(S) - lim n iX+
s!.0 0 s .+0 n+ (s+S)

This implies that
n c1

K- E- (3.21)

Using equations (3.21) in (3.20) and simplifying we get

dn- + n-2 + " + d
.s) a - n -0
Lw-( n

41 (s+4,)i-i

where d 's are constants.

Or, Lw.(s) - 1:

where t's are constants.

This completes the proof. M

Theorem 3 - A GnjIM1 queue has a steady state solution if izB > n where

0 a t ai(t)dt

Proof - From Lemma h we observe that when s s n one of the n roots of the

equation (3.11b) becomes 6n a 1. This root corrosponds to n 0. Thus

from Theorem2L (s) has a tem of the form-.

-13.



As a consequence lir s L w(s), and hence lir Ew.(t) is finite. This cannot
s -#O t

be true for a steady state solution of the queue. Therefore the queue

reaches a steady state if and only if uB > n and hence the theorem. w

The existence of a steady state has been established in Theorem 3

under the condition lAB > n. As B is simply the expected length of time

for n arrivals, this condition is no different from the standard steady

state condition of p < 1.

A GIMI1 queue corresponds to a GnIM[1 queue with n-l, since the solutions

given above for the GnIMIl queue correspond to the well known solutions of

GIMj1 queue when we take n - 1.

The form of Lw (s) given by equation (3.12) implies that in steady

state Ew.(t) can be expressed as a sum of n exponential terms where the

exponent coefficients are determined from the roots of the equation

(3.14b). From the form of x(s) as given in equation (3.14a), the roots

of equation (3.14b) do not depend or the order of ai's in the sequence.

The initial value, Ew.(O) does depend on the sequence, however.

To obtain the steady state solution of a GnIMI1 system, one approach

is to apply the spectral factorization technique used in the proof of

Theorem 2 to determine the coefficients at's. The coefficients 4t's

are obtained as roots of equation(3.14a)using the results of Lemma 5.

An alternate approach to obtaining the coefficients ci's is to assume

Ew_ (t) -I E je';j t  ( 3.22)

and substitute this in equations (3.2) and (3.3) .Also,
nEw_ (t) - E at - 3.2

1 jul i
n

and Ew+ (0) + E

1 ~J
Thus from equation (3.2) we have

-14-



n n

Usigequation n (3.24) we g

+ n t~(3.2)
Eul U E j La2lj 4(3.26)

As the form of Ew.(t) remains the same for each step in the cycle, in

equation (3.24) we must have

I_ + Ya - 0 ( 3.2)
1- J-1 ;Jl-U

Then i

Ew t i 57 La ( eJ't ( 3.26)

2 Jul a2(4JJ)

Similarly,

Ew.3(t) Jl 2  L(L ( eJt

and

n ~4 -- ( La ft ( . 4(3.27)..l u. 2 J

After the nth step we have



n n
E -' t

I w.u1(t) • . C uln1t) xj 1 kul ak=1

(3.28,

yielding n linear equations of the type (3.27).

Clearly, the equality of E. (t) and E.n+ (t) holds where

n(j n a( 3Jm for J -,2...n
(3.29)

The rd's obtained as negative roots of equation (3.14b) satisfy equation

(3.29). The values of mtIs are obtained by solving n linear equations of

the form (3.25), (3.27), etc. A solution for a GnIM1 queue may, therefore,

be obtained by finding n roots of equation (3.14b) and solving a set of

n linear equations. This approach Is simpler than the.spectral factorization

technique. In the next section we present an example of obtaining the

steady state solution for a GnIM1 queue.

.16-



IV. APPLICATICN

A situation in which n/Ml queues occur is when an arrival stream

is split among k servers using a deterministic sequence, the arrivals

seen by each server form a cyclic pattern. For example consider the 2

server system shown in Figure 3. The arrivals at box D are

Figure 3

sent to the two servers using a sequence of length 3

1 1 2

Let the arrivals to 0 be independent with a general distribution F(t).

Let us denote the 1-fold convolution, F(1 )(t) by
i times

The arrivals seen by server 1 follow a cyclic pattern
F(Zl(t), Fl(2)(t),9

Similarly, thearrivals at servers 2 follow general arrivals from
Fl(3)(t),

2
Queue I is of the G I Mil type and can be analysed using the results of

this paper.

in particular, let us consider the arrivals to 0 be Poission with

rate X, 1.e.,
F(t) - I - e't



Let the service rates of the two servers be u, and 12. For server 1,

F1(t) is the same as F(t) and F2(t) is given by

F(t) ® F(t)

Thus, Lal(s) and L (s) are --L and respectively. Equation (3.14b)

reduces to
2 3  1. (4.1)

Also, we have the two linear equatiors

1+ + 4 0 (4.2)

2
and + I . 2( X +;2 l I)

n 1-1 ) ()2-14) (N1-02

.-. (4.3)

As a numerical example let p, 0.2 and X • 0.1.

In this case we get

41 - 0.14913

42 - 0.23295

a1  *1-41565

2 -0 .1 0 78 9 0.2

Thus E,.(t) a 1.41565 e"0"14913t - 0.1079 e0 "23295t

From this we note that,

E_(0) - 1.30776

Ew+(O) a 6"30776

The before and after arrival values of the expected virtual waiting time,

after the next arrival, are 2.4556 and 7.4656, respectively.

-16-



A solution for this example obtained by an iterative solution of

the transient equations has been reported in [4]. The solution obtained

here is exactly the same as the one reported in t4].

For this example, the Interarrival times seen by server 2 have the

same three stage hypo-exponential distribution. The expected waiting

tfme seen by an arrival routed to this server by the above sequence can

be obtained by using the standard solution to GINMl queue. For p - 0.1,

the expected waiting time is 11.9403. Thus, the expected waiting time

for an arrival to these two servers using the deterministic routing is

8.5679. If the routing were done at random with probability 2/3 for

server 1 and 1/3 for server 2 the expected waiting time would have been

10.00. It is interesting to note that in this case a deterministic

decision rule does better than a probabilitic rule.

L.

I'



V. SHARY

In this paper the steady state behavior of an exponential, first-In-

first-out queue with cyclic arrivals has been analyzed. This arrival

structure is a generalization of GIMIl queues. The well known result of

GIMl queues that the waiting time is exponentially distributed has been

generalized to the Gn lltI queue. This generalization yields an easier

technique for solving a given GnIN11 queue. An example to show the use

of the results has been presented, as well.
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